On the Lupaş q-analogue of the Bernstein operator

Sofiya Ostrovska

Atilim University, Department of Mathematics, 06836 Incek, ANKARA

e-mail: ostrovskasofiya@yahoo.com

Key words: q-integers; q-binomial theorem; Lupaş q-analogue of the Bernstein operator; analytic function

The importance of the Bernstein polynomials opened the gates to the discovery of their numerous generalizations and applications in various mathematical disciplines. As an example, recent generalizations based on the q-integers emerged due to the speedy development of the q-calculus. A. Lupaş was the person who pioneered work on the q-versions of the Bernstein polynomials. In 1987, he introduced (cf. [1]) a q-analogue of the Bernstein operator, and investigated its approximation and shape-preserving properties. Since then, the study of the q-analogue has been in progress, see [2]-[4].

Let $q > 0$. For any $n = 0, 1, 2, \ldots$ the q-integer $[n]_q$ is defined by:

$$[n]_q := 1 + q + \cdots + q^{n-1} \quad (n = 1, 2, \ldots), \quad [0]_q := 0;$$

and the q-factorial $[n]_q!$ by:

$$[n]_q! := [1]_q[2]_q \cdots [n]_q \quad (n = 1, 2, \ldots), \quad [0]_q! := 1.$$

For integers $0 \leq k \leq n$, the q-binomial coefficient is defined by:

$$\left[\begin{array}{c} n \\ k \end{array} \right]_q := \frac{[n]_q!}{[k]_q! [n-k]_q!}.$$

Definition 1. Let $q > 0$, $f : [0, 1] \to \mathbb{C}$. The linear operator

$$(R_{n,q} f)(z) := \sum_{k=0}^{n} f \left(\frac{[k]_q}{[n]_q} \right) b_{nk}(q; x), \quad n \in \mathbb{N},$$

where

$$b_{nk}(q; x) := \left[\begin{array}{c} n \\ k \end{array} \right]_q \frac{q^{k(k-1)/2} x^{k} (1-x)^{n-k}}{(1-x+qx) \cdots (1-x+q^{n-1}x)}, \quad k = 0, \ldots, n$$

is called the Lupaş q-analogue of the Bernstein operator.

Clearly, if $q = 1$, then $R_{n,q}$ reduce to the classical Bernstein polynomials. In the case $q \neq 1$, operators $R_{n,q}$ are rational functions rather than polynomials.
The limit q-Lupaş operator $(\Lambda_q f)$ comes out naturally as a limit for a sequence of the Lupaş q-analogues of the Bernstein operator. Lately, it has been studied by several authors from different perspectives of mathematical analysis and approximation theory. This operator is closely related to the q-deformed Poisson probability distribution, which is used widely in the q-boson operator calculus.

In this talk, we discuss the convergence properties of the operators $R_{n,q} f$ as well as some analytic properties of the $(\Lambda_q f)(z)$. In particular, we examine the conditions under which $\Lambda_q f$ can be either an entire function or a rational one.

References

